The potato psyllid and its associated pathogens
Overview

This presentation will discuss the potato psyllid, *Bactericera cockerelli*

- Host plants
- Life cycle
- Distribution
- Recognition
- Damage due to feeding and pathogen transmission
- Biosecurity issues
- Management
What is a psyllid?

- Psyllids are known as jumping plant lice.
- Adults are highly mobile and jump quickly when disturbed.
- Life stages include egg, nymph, and adult.

Photos: top and middle - Joe Munyaneza, USDA/ARS; bottom - Whitney Cranshaw, Colorado State University, Bugwood.org, #5369938
What is a potato psyllid?

Adult potato psyllid

Photos: Whitney Cranshaw, Colorado State University, www.bugwood.org, #1476083
Distribution map of the potato psyllid in the Americas

- Lighter blue areas are colonized intermittently.
- Note that half of North America has no potato psyllids.
Hosts of the potato psyllid

- Over 20 families and 40 plant species are hosts, but they prefer Solanaceous plants.
- Usually found on leaves.
- Can be on pepper fruit.
- Causes a regulatory hazard

Psyllid nymphs hide under the calyx of the peppers.

Photo: Susan Halbert FDACS/DPI
Life cycle of the potato psyllid

- Eggs
Life cycle of the potato psyllid

• Nymphs

Late stage nymph

Early stage nymph

Photos: Joe Munyaneza, USDA/ARS
Life cycle of the potato psyllid

- Adults

Potato psyllids have a distinctive pattern on the back of their head.

Photo: left - Joe Munyaneza, USDA/ARS; right - Susan Halbert, FDACS/DPI

protect u.s.
How to identify potato psyllids

- Slide mounted specimens required for identification by a trained taxonomist
- Your local county extension agent can advise you on sample submission for identification
- There are many similar species of psyllids that may look like potato psyllid, but they are found on other plants.
Are there other psyllids found on solanaceous crops?

• In Eurasia, South America, and Australia, there are other species of psyllids on solanaceous crops.
• If you find psyllids on solanaceous crops, and they do not look like the potato psyllid, notify your local extension agent.
Direct damage from potato psyllids

- Known as “psyllid yellows.”
- Observed for decades.
- Plants recover when psyllids are removed.

Damage to the stems of potato plants caused by the potato psyllid.

Psyllid yellows in ‘Atlantic’ potatoes.
Tuber damage from psyllid yellows

- Growth to slow or stop, tubers are commonly misshaped and can begin sprouting before harvest.

Tubers prematurely sprouting prior to harvest due to psyllid yellows.
Pathogen transmission by potato psyllids

- Potato psyllids transmit bacteria that cause zebra chip disease in potatoes.
- Symptoms occur in foliage and tubers.

Foliar symptoms of zebra chip disease

Photo: Joseph Munyaneza, USDA/ARS
Pathogen transmission by potato psyllids

- Tubers harvested from infected plants present a striped pattern when fried.

Photos: Joseph Munyaneza, USDA/ARS
If my potato plant is sick, does it have zebra chip disease?

• Solanaceous crops are subject to many disorders and diseases.

• Zebra chip disease can only be diagnosed by a laboratory.

• If you suspect that you have potato psyllids and your crop may have zebra chip disease, contact your local extension agent.
How do potato psyllids move?

Photos: Nina Zagvazdina and Susan Halbert, FDACS/DPI; truck -

Potato psyllid nymphs
Management of potato psyllids

• No cure for zebra chip disease.
• Management of psyllid populations is key.
• The first step in management is monitoring.
 – Use sweep nets and vacuum devices or sticky traps for adults.
 – Use visual inspection for eggs and nymphs.
Monitoring for potato psyllids

• Sweep nets and vacuum devices:
 – Use a very fine mesh net.
 – Do not beat the foliage – aim for the tips of the leaves.
 – Psyllids will be startled, and their instinct is to jump – right into the net!
 – Use an aspirator to collect the bugs.

Aspirator

Sweep net
Monitoring for potato psyllids

- Sticky traps:
 - Yellow sticky traps can also be used to monitor for adults.
 - A psyllid pheromone is being developed at ARS-Wapato.

Photos: Joseph Munyaneza, USDA/ARS
Monitoring for potato psyllids

• Visual inspection:
 – Look on the leaves and other above ground parts of the plant for eggs and nymphs.
 • 100 leaves (10 from 10 locations along field perimeter).
 • Labor-intensive

Photos: Joseph Munyaneza, USDA/ARS
Cultural control for potato psyllids

• Planting date may affect the occurrence of zebra chip disease
Biological control for potato psyllids

- Generalist predators:
 - lady beetle
 - minute pirate bug
 - damsel bug
 - lacewing
- Parasitoid wasp
 - *Tamarixia triozae*
- It has yet to be determined whether these natural enemies are effective at mitigating disease spread.
Chemical control for potato psyllids

- Currently, most management to control for zebra chip disease depend on chemical control.
- Application timing depends on monitoring efforts.
- Consult your local extension agent for specific recommendations for your area.
Regulatory measures

- State and federal regulations prohibit movement of psyllids and pathogens into areas where they are not known to occur.
- Seed testing and certification is required in most potato producing states.

Map of states with seed certifying agencies.
Questions?

• For more information, check out www.protectingusnow.org

• You can also contact:
 – Amanda Hodges, Ph.D., Associate Extension Scientist, Department of Entomology and Nematology, University of Florida, achodges@ufl.edu
 – Stephanie Stocks, M.S., Assistant –In, Extension Scientist, Department of Entomology and Nematology, University of Florida, sstocks@ufl.edu
Authors

• Susan E. Halbert
 – Florida Department of Agriculture & Consumer Services, Division of Plant Industry

• Joseph E. Munyaneza
 – USDA/ARS, Yakima Agricultural Research Laboratory, Wapato, Washington

• Lanette Sobel
 – Doctor of Plant Medicine student, University of Florida

• Published June 2012
• Updated August 2013
Reviewers

• Stephanie Stocks, M.S., Department of Entomology and Nematology, University of Florida

• Amanda Hodges, Ph.D., Department of Entomology and Nematology, University of Florida

• Jennifer Weeks, Ph.D., Department of Entomology and Nematology, University of Florida
Educational Disclaimer and Citation

• This publication can be used for non-profit, educational use only. Photographers retain copyright to images contained in this publication as cited. This material was developed as a topic-based training module Protect U.S. The authors and website should be properly cited. Images or photographs should also be properly cited and credited to the original source.

• Citation:
Much of the authorship of e-learning content has occurred through partnerships. Some of our partnering organizations have included:

- National Institute of Food and Agriculture (NIFA)
- Regional IPM Centers
 - Center for Invasive Species and Ecosystem Health
 (i.e. the Bugwood Network)
- U.S. Department of Homeland Security (DHS)
- U.S. Forest Service
- Extension Disaster Education Network (EDEN)
- National Plant Board (NPB) and State Departments of Agriculture
- National Plant Diagnostic Network (NPDN)
- Cooperative Agriculture Pest Survey Program (CAPS)
References

 – http://www.ianrpubs.unl.edu/epublic/live/g2113/build/#target2

References

 – http://zebrachipscri.tamu.edu/files/2012/06/Potato_Psyllid_Life_History_ButlerTrumbleTAR.pdf

• Cranshaw. W.S. 2013. Potato or Tomato Psyllids, Fact Sheet No. 5.540 . Colorado State University. Accessed August 27, 2013 -
 – http://www.ext.colostate.edu/pubs/insect/05540.html

References

• Idaho Center for Potato Research and Education. 2012. Potato Storage and Production. Accessed June 25, 2012-
 • http://www.kimberly.uidaho.edu/potatoes/INFO.htm

References

References

References
