Monitoring and Management of Spotted Wing Drosophila

Oscar E. Liburd

Department of Entomology University of Florida

Spotted Wing Drosophila

Reported Distribution

China	Native	Washington	Summer 2009
India	Native	Florida	Summer 2009
Japan	1931	B. Columbia, CN	Summer 2009
Other Asia		France	2010
Hawaii	~1980	Russia	2010
Spain	2008	South Carolina	Spring 2010
California	fall 2008	North Carolina	Fall 2010
Italy	2009	Kentucky	Fall 2010
Oregon	Summer 2009	Michigan	Fall 2010
		Louisiana	Fall 2010
		Utah	Fall 2010

Spotted Wing Drosophila

- Diptera: Drosophilidae *Drosophila suzukii* "Fruit flies", "Vinegar flies", "Pomace flies"
- Our normal fruit fly *Drosophila melanogaster*
- **NOT**: Tephritidae fruit flies (bigger) Blueberry maggot

Blueberry maggot

Drosophila melanogaster

Some Vulnerable Fruits Florida California

Raspberries Blackberries **Blueberries Strawberries** Grapes (?) Tomatoes (?) Peaches **Mulberries** Orange jessamine Previous fruits plus ... Cherries Nectarines **Boysenberries** Plums Asian plums Satsuma plums Plumcots

Identification

te to 1. Akting

Monitoring Ecology

Management

Use of Natural Enemies Reduced-risk & Conventional Strategies Prevention (exclusion)

Correct Identification

Developing a Management Program for D. suzukii

Male Black spot on wings

Female

USDA-ARS & OSU •D. suzukii Management

Ovipositor that damage the fruit Where eggs are laid

Monitoring in IPM programs

- Monitoring involves taking regular notes on pests, natural enemies, crop growth and environment over a specified time
- Traps should be placed in the shade

Reasons for monitoring

- \checkmark To determine if the pest is present
- ✓ To determine population density and distribution
- ✓ To apply the most appropriate management programs

Monitoring (trap)

•Monitoring should begin when fruits are 'full green' and begin to turn blue

Yeast-Sugar Bait Solution Recipe:

2 teaspoons of bakers yeast
4 teaspoons of sugar
2 cups of water
Mix and pour ≈1 ½ inches of yeast bait
into cup

- •Obtain 32 oz plastic cups
- Drill four holes (3/8 of an inch)in the lid
- Attach a wire strap for hanging the trap
- Place yellow sticky cards inside the wall of the cup

USDA-ARS & OSU D. suzukii Management

Various types of Spotted Wing Drosophila traps

Courtesy MSU

Monitoring Adult Emergence

 Adults can be monitored when they emerge in the spring

Method for checking the fruit for SWD

Flotation Method

- Randomly collect 80-100 berries
- Crush the fruit in a container
- Place in a quart size zip-lock bag
- Add a cup of sugar-water solution (1/4 cup sugar and 1 quart water)
- After a few minutes SWD larvae should float to the top and crushed pulp will fall to the bottom
- A hand lens may be necessary to see the small larvae

USDA-ARS & OSU D. suzukii Management

Dreves, Lee 2010

Selected Biological Parameters: (Japanese Literature)

- Adults most active at 68 F (20 C)
- Adult activity low at 86 F (30 C)
- About 10-16 generations per year
- 300-400 eggs / female

Prevention

Sanitation

- Harvest ripe berries on a regular basis
- Remove or compost ripe berries that fall unto the soil
- Area-wide cooperation

Prevention

Exclusion

Preventing adults from laying eggs on the fruit

- Kaolin clay
 - coating on fruit
 - prevent adults
 from laying eggs
 on the fruit

Particle film technology

Act as a physical barrier, disrupt host finding and a repellent

Prevention Exclusion

 Berries sprayed with Kaolin needs to be washed, which can create marketing problems

Exclusion

Perimeter Mass Trapping

Preventing adults from entering the planting

Reduced-risk strategies

- GF120 (protein-based attractant with killing agent spinosad)
- NuLure (a protein hydrolysate fruit fly lure) comprised of corn gluten meal mixed with a chemical

Biologicals

- Delegate (2nd generation spinosyn)
- Entrust (spinosyn, labeled for organic use)

Some Possibilities for Organic Blueberries

- Pyganic
- Aza-Direct
- Entrust
- GF-120

Conventional Chemical Sprays

• Depending on the state of fruit development it is important to note the PHI on the pesticide label

<u>OP's</u>

Malathion bait sprays (1 day PHI)

Imidan (Phosmet) (3 day PHI)

Diazinon (7 day PHI)

Conventional Chemical Sprays

• Depending on the state of fruit development it is important pesticides are safe and have short PHI

Pyrethroids

- Danitol[®] (Fenpropathrin) [3 day PHI]
- Mustang Max[™] (1 day PHI)
- Asana (14 d PHI)

Beneficial insects regulating D. suzukii

Bigeyed bug (Geocoris spp.)

Amblyseius swirskii

Minute pirate bug (Orius spp.)

Contact Information

• Dr. Oscar E. Liburd

Entomology & Nematology Department University of Florida, Gainesville, FL 32611 Tel (352) 273-3918 <u>oeliburd@ufl.edu</u>

http://entnemdept.ufl.edu/liburd/fruitnvegipm/

<u>Acknowledgements</u>

Dr. James Price (Univ. of Florida)

Dr. Hannah Burrack (NC State Univ)